LuxS Involvement in the Regulation of Genes Coding for Hemin and Iron Acquisition Systems in Porphyromonas gingivalis

Author:

James Chloe E.1,Hasegawa Yoshiaki1,Park Yoonsuk1,Yeung Vincent1,Tribble Gena D.1,Kuboniwa Masae1,Demuth Donald R.2,Lamont Richard J.1

Affiliation:

1. Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida 32610

2. Department of Periodontics, Endodontics and Dental Hygiene, School of Dentistry, University of Louisville, Louisville, Kentucky 40292

Abstract

ABSTRACT The periodontal pathogen Porphyromonas gingivalis employs a variety of mechanisms for the uptake of hemin and inorganic iron. Previous work demonstrated that hemin uptake in P. gingivalis may be controlled by LuxS-mediated signaling. In the present study, the expression of genes involved in hemin and iron uptake was determined in parent and luxS mutant strains by quantitative real-time reverse transcription-PCR. Compared to the parental strain, the luxS mutant showed reduced levels of transcription of genes coding for the TonB-linked hemin binding protein Tlr and the lysine-specific protease Kgp, which can degrade host heme-containing proteins. In contrast, there was up-regulation of the genes for another TonB-linked hemin binding protein, HmuR; a hemin binding lipoprotein, FetB; a Fe 2+ ion transport protein, FeoB1; and the iron storage protein ferritin. Differential expression of these genes in the luxS mutant was maximal in early-exponential phase, which corresponded with peak expression of luxS and AI-2 signal activity. Complementation of the luxS mutation with wild-type luxS in trans rescued expression of hmuR . Mutation of the GppX two-component signal transduction pathway caused an increase in expression of luxS along with tlr and lower levels of message for hmuR . Moreover, expression of hmuR was repressed, and expression of tlr stimulated, when the luxS mutant was incubated with AI-2 partially purified from the culture supernatant of wild-type cells. A phenotypic outcome of the altered expression of genes involved in hemin uptake was impairment of growth of the luxS mutant in hemin-depleted medium. The results demonstrate a role of LuxS/AI-2 in the regulation of hemin and iron acquisition pathways in P. gingivalis and reveal a novel control pathway for luxS expression.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3