Localization and Regulation of Synthesis of Nitrate Reductase in Escherichia coli

Author:

Showe Michael K.1,DeMoss J. A.1

Affiliation:

1. Department of Biology, Revelle College, University of California, San Diego, La Jolla, California 92037

Abstract

The nitrate reductase of Escherichia coli K-12 was localized in a particulate fraction of the cell and it sedimented as if it were bound to a large substructure that is subject to fragmentation during cell disruption procedures. Soluble enzyme, exhibiting a homogenous profile in sucrose gradients, was released from this fraction by an alkaline-heat treatment. Less than 1.5% of total active nitrate reductase apparently occurred in this soluble form during the course of formation of the particulate enzyme. Enzyme synthesis was repressed by aeration in the presence or absence of nitrate. Under anaerobic conditions, nitrate reductase was synthesized at a rate that could be increased 20-fold by the addition of nitrate. When enzyme synthesis was initiated by induction with nitrate or anaerobiosis, biphasic kinetics were obtained. We interpreted the results as evidence for the existence of a redox-sensitive repressor which mediates nitrate reductase regulation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 223 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3