Isolation and characterization of 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole-resistant mutants of the Chinese hamster ovary cell line.

Author:

Funanage V L

Abstract

Mutants resistant to the RNA synthesis inhibitor 5,6-dichloro-1-beta-D-ribofurano-sylbenzimidazole (DRB) have been isolated in the Chinese hamster ovary cell line CHO-K1. Three independently isolated mutants, DRB6 DRB10, and DRB13, were 3-, 5-, and 3.5-fold, respectively, more resistant to DRB than the parental cell line WTCHO. The DRB-resistant mutations were expressed codominantly in somatic cell hybrids of DRB-resistant and DRB-sensitive cell lines. In vivo treatment of CHO-K1 cells with DRB resulted in specific inhibition of endogenous RNA polymerase II activity in cell lysates. Whereas DRB inhibited RNA polymerase II activity in WTCHO cells by a maximum of 60% at concentrations as low as 60 microM, 300 microM DRB was required to inhibit 60% of the RNA polymerase II activity in DRB10 cells. However, the inhibition of the DRB-sensitive RNA polymerase II activity in DRB10 was biphasic. About half (53 to 56%) of this activity was inhibited by 90 microM DRB and thus showed a DRB sensitivity similar to the wild-type RNA polymerase II activity; the remaining DRB-sensitive RNA polymerase II activity was maximally inhibited by 300 microM DRB. These results indicated that there were two copies of the drbR locus (drb+ and drbR-10) in DRB10 and confirmed that the drbR-10 mutation was expressed codominantly. Somatic cell hybrids of DRB-resistant and alpha-amanitin-resistant cell lines grew in medium containing both DRB and alpha-amanitin, demonstrating that the drbR and amaR mutations were not in the same gene. Thus, the drbR mutations may define an additional component of the RNA polymerase II transcriptional complex in mammalian cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3