Isolation of Estrogen-Responsive Genes with a CpG Island Library

Author:

Watanabe Toru12,Inoue Satoshi1,Hiroi Hisahiko1,Orimo Akira1,Kawashima Hiroyuki2,Muramatsu Masami1

Affiliation:

1. Department of Biochemistry, Saitama Medical School, Moroyama-machi, Iruma-gun, Saitama 350-04, 1 and

2. Molecular Medicine Research Laboratory, Yamanouchi Pharmaceutical Co., Ltd., Tsukuba, Ibaraki 305, 2 Japan

Abstract

ABSTRACT In order to isolate novel estrogen-responsive genes, we utilized a CpG island library in which the regulatory regions of genes are enriched. CpG islands were screened for the ability to bind to a recombinant estrogen receptor protein with a genomic binding site (GBS) cloning method. Six CpG islands were selected, and they contained perfect, imperfect, and/or multiple half-palindromic estrogen-responsive elements (EREs). Northern blot analysis of various human cells showed that all these genomic fragments hybridized to specific mRNAs, suggesting that the genes associated with these EREs might be transcribed in human cells. Then cDNAs associated with two of them, EB1 and EB9, were isolated from libraries of human placenta and MCF-7 cells derived from a human breast cancer, respectively. Both transcripts were increased by estrogen in MCF-7 cells. The increase is inhibited by actinomycin D but not by cycloheximide, indicating that no protein synthesis is required for the up-regulation. The cDNA associated with EB1 encodes a 114-amino-acid protein similar to the cytochrome c oxidase subunit VIIa, named COX7RP (cytochrome c oxidase subunit VII-related protein). The cDNA associated with EB9 is homologous only to an express sequence tag and was named EBAG9 (estrogen receptor-binding fragment-associated gene 9). The palindromic ERE of EB1 is located in an intron of COX7RP, and that of EB9 is in the 5′ upstream region of the cDNA. Both EREs had significant estrogen-dependent enhancer activities in a chloramphenicol acetyltransferase assay, when they were inserted into the 5′ upstream region of the chicken β-globin promoter. We therefore propose that the CpG-GBS method described here for isolation of the DNA binding site from the CpG island library would be useful for identification of novel target genes of certain transcription factors.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3