Reversible Association between the V 1 and V 0 Domains of Yeast Vacuolar H + -ATPase Is an Unconventional Glucose-Induced Effect

Author:

Parra Karlett J.1,Kane Patricia M.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, SUNY Health Science Center at Syracuse, Syracuse, New York 13210

Abstract

ABSTRACT The yeast vacuolar H + -ATPase (V-ATPase) is a multisubunit complex responsible for organelle acidification. The enzyme is structurally organized into two major domains: a peripheral domain (V 1 ), containing the ATP binding sites, and an integral membrane domain (V 0 ), forming the proton pore. Dissociation of the V 1 and V 0 domains inhibits ATP-driven proton pumping, and extracellular glucose concentrations regulate V-ATPase activity in vivo by regulating the extent of association between the V 1 and V 0 domains. To examine the mechanism of this response, we quantitated the extent of V-ATPase assembly in a variety of mutants with known effects on other glucose-responsive processes. Glucose effects on V-ATPase assembly did not involve the Ras-cyclic AMP pathway, Snf1p, protein kinase C, or the general stress response protein Rts1p. Accumulation of glucose 6-phosphate was insufficient to maintain or induce assembly of the V-ATPase, suggesting that further glucose metabolism is required. A transient decrease in ATP concentration with glucose deprivation occurs quickly enough to help trigger disassembly of the V-ATPase, but increases in cellular ATP concentrations with glucose readdition cannot account for reassembly. Disassembly was inhibited in two mutant enzymes lacking ATPase and proton pumping activities or in the presence of the specific V-ATPase inhibitor, concanamycin A. We propose that glucose effects on V-ATPase assembly occur by a novel mechanism that requires glucose metabolism beyond formation of glucose 6-phosphate and generates a signal that can be sensed efficiently only by a catalytically competent V-ATPase.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3