Isolation and Functional Characterization of cDNA of Serum Amyloid A-Activating Factor That Binds to the Serum Amyloid A Promoter

Author:

Ray Alpana1,Ray Bimal K.1

Affiliation:

1. Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211

Abstract

ABSTRACT Serum amyloid A (SAA), a plasma protein inducible in response to many inflammatory conditions, is associated with the pathogenesis of several diseases including reactive amyloidosis, rheumatoid arthritis, and atherosclerosis. We have previously reported an element of the SAA promoter, designated SAA-activating sequence (SAS), that is involved in the inflammation-induced SAA expression, and a nuclear factor, SAS-binding factor (SAF), that interacts with the SAS element has been identified previously (A. Ray and B. K. Ray, Mol. Cell. Biol. 16:1584–1594, 1996). To evaluate how SAF is involved in SAA promoter activation, we have investigated structural features and functional characteristics of this transcription factor. Our studies indicate that SAF belongs to a family of transcription factors characterized by the presence of multiple zinc finger motifs of the Cys 2 -His 2 type at the carboxyl end. Of the three cloned SAF cDNAs (SAF-1, SAF-5, and SAF-8), SAF-1 isoform showed a high degree of homology to MAZ/ZF87/Pur-1 protein while SAF-5 and SAF-8 isoforms are unique and are related to SAF-1/MAZ/ZF87/Pur-1 at the zinc finger domains but different elsewhere. Although structurally distinct, all members are capable of activating SAS element-mediated expression and display virtually identical sequence specificities. However, varying levels of expression of members of this gene family were observed in different tissues. Functional activity of SAF is regulated by a posttranslational event as SAF DNA-binding and transactivation abilities are increased by a protein phosphatase inhibitor, okadaic acid, and inhibited by a protein kinase inhibitor, H7. Consistent with this observation, increased DNA binding of the cloned SAF and its hyperphosphorylation, in response to okadaic acid treatment of the transfected cells, were observed. Taken together, our results suggest that, in addition to tissue-specific expression, SAFs, a family of zinc finger transcription factors, undergo a modification by a posttranslational event that confers their SAA promoter-binding activity and transactivation potential.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3