Affiliation:
1. Institute of Medical Microbiology, Immunology and Parasitology, Rheinische Friedrich-Wilhelms-Universität, University of Bonn, Bonn, Germany
2. Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
3. Bruker Daltonik GmbH, Bremen, Germany
Abstract
ABSTRACT
The clinical impact of severe infections with yeasts and yeast-like fungi has increased, especially in immunocompromised hosts. In recent years, new antifungal agents with different and partially species-specific activity patterns have become available. Therefore, rapid and reliable species identification is essential for antifungal treatment; however, conventional biochemical methods are time-consuming and require considerable expertise. We evaluated matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the rapid routine identification of clinical yeast isolates. A total of 18 type collection strains and 267 recent clinical isolates of
Candida
(
n
= 250),
Cryptococcus
,
Saccharomyces
,
Trichosporon
,
Geotrichum
,
Pichia
, and
Blastoschizomyces
spp. were identified by MALDI-TOF MS. The results were compared with those obtained by conventional phenotyping and biochemical tests, including the API ID 32C system (bioMérieux, Nürtingen, Germany). Starting with cells from single colonies, accurate species identification by MALDI-TOF MS was achieved for 247 of the clinical isolates (92.5%). The remaining 20 isolates required complementation of the reference database with spectra for the appropriate reference strains which were obtained from type culture collections or identified by 26S rRNA gene sequencing. The absence of a suitable reference strain from the MALDI-TOF MS database was clearly indicated by log(score) values too low for the respective clinical isolates; i.e., no false-positive identifications occurred. After complementation of the database, all isolates were unambiguously identified. The established API ID 32C biochemical diagnostic system identified 244 isolates in the first round. Overall, MALDI-TOF MS proved a most rapid and reliable tool for the identification of yeasts and yeast-like fungi, with the method providing a combination of the lowest expenditure of consumables, easy interpretation of results, and a fast turnaround time.
Publisher
American Society for Microbiology
Reference38 articles.
1. Phenotypic and Molecular Characterization of
Candida nivariensis
sp. nov., a Possible New Opportunistic Fungus
2. Amiri-Eliasi, B., and C. Fenselau. 2001. Characterization of protein biomarkers desorbed by MALDI from whole fungal cells. Anal. Chem.73:5228-5231.
3. Arnold, R. J., and J. P. Reilly. 1998. Fingerprint matching of E. coli strains with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of whole cells using a modified correlation approach. Rapid Commun. Mass Spectrom.12:630-636.
4. Rapid Identification and Typing of
Listeria
Species by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry
5. Bhally, H. S., S. Jain, C. Shields, N. Halsey, E. Cristofalo, and W. G. Merz. 2006. Infection in a neonate caused by Pichia fabianii: importance of molecular identification. Med. Mycol.44:185-187.
Cited by
397 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献