Characterization of
Streptococcus pneumoniae
TrmD, a tRNA Methyltransferase Essential for Growth
-
Published:2004-04-15
Issue:8
Volume:186
Page:2346-2354
-
ISSN:0021-9193
-
Container-title:Journal of Bacteriology
-
language:en
-
Short-container-title:J Bacteriol
Author:
O'Dwyer Karen1, Watts Joseph M.2, Biswas Sanjoy1, Ambrad Jennifer1, Barber Michael1, Brulé Hervé2, Petit Chantal1, Holmes David J.1, Zalacain Magdalena1, Holmes Walter M.2
Affiliation:
1. Microbial, Musculoskeletal and Proliferative Diseases CEDD, GlaxoSmithKline, Collegeville, Pennsylvania 19426 2. Institute for Structural Biology and Drug Discovery and Department of Microbiology and Immunology, Medical College of Virginia, Campus of Virginia Commonwealth University, Richmond, Virginia 23298
Abstract
ABSTRACT
Down-regulation of expression of
trmD
, encoding the enzyme tRNA (guanosine-1)-methyltransferase, has shown that this gene is essential for growth of
Streptococcus pneumoniae
. The
S. pneumoniae trmD
gene has been isolated and expressed in
Escherichia coli
by using a His-tagged T7 expression vector. Recombinant protein has been purified, and its catalytic and physical properties have been characterized. The native enzyme displays a molecular mass of approximately 65,000 Da, suggesting that streptococcal TrmD is a dimer of two identical subunits. In fact, this characteristic can be extended to several other TrmD orthologs, including
E. coli
TrmD. Kinetic studies show that the streptococcal enzyme utilizes a sequential mechanism. Binding of tRNA by gel mobility shift assays gives a dissociation constant of 22 nM for one of its substrates,
\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathit{tRNA}_{\mathit{CAG}}^{\mathit{Leu}}\) \end{document}
. Other heterologous nonsubstrate tRNA species, like
\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathit{tRNA}_{\mathit{GGT}}^{\mathit{Thr}}\) \end{document}
, tRNA
Phe
, and
\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathit{tRNA}_{\mathit{TGC}}^{\mathit{Ala}}\) \end{document}
, bind the enzyme with similar affinities, suggesting that tRNA specificity is achieved via a postbinding event(s).
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Reference42 articles.
1. Ahn, H. J., H. W. Kim, H. J. Yoon, B. I. Lee, S. W. Suh, and J. K. Yang. 2003. Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition. EMBO J.22:2593-2603. 2. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs 3. Björk, G. R. 1996. Stable RNA modification, p. 861-886. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, Jr., B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C. 4. Björk, G. R., J. M. Durand, T. G. Hagervall, R. Leipuviene, H. K. Lundgren, K. Nilsson, P. Chen, Q. Qian, and J. Urbonavicius. 1999. Transfer RNA modification: influence on translational frameshifting and metabolism. FEBS Lett.452:47-51. 5. Björk, G. R., K. Jacobsson, K. Nilsson, M. J. Johansson, A. S. Byström, and O. P. Persson. 2001. A primordial tRNA modification required for the evolution of life? EMBO J.20:231-239.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|