Relationship of Critical Temperature to Macromolecular Synthesis and Growth Yield in Psychrobacter cryopegella

Author:

Bakermans Corien12,Nealson Kenneth H.2

Affiliation:

1. Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824

2. Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-0740

Abstract

ABSTRACT Most microorganisms isolated from low-temperature environments (below 4°C) are eury-, not steno-, psychrophiles. While psychrophiles maximize or maintain growth yield at low temperatures to compensate for low growth rate, the mechanisms involved remain unknown, as does the strategy used by eurypsychrophiles to survive wide ranges of temperatures that include subzero temperatures. Our studies involve the eurypsychrophilic bacterium Psychrobacter cryopegella , which was isolated from a briny water lens within Siberian permafrost, where the temperature is −12°C. P. cryopegella is capable of reproducing from −10 to 28°C, with its maximum growth rate at 22°C. We examined the temperature dependence of growth rate, growth yield, and macromolecular (DNA, RNA, and protein) synthesis rates for P. cryopegella. Below 22°C, the growth of P. cryopegella was separated into two domains at the critical temperature ( T critical = 4°C). RNA, protein, and DNA synthesis rates decreased exponentially with decreasing temperatures. Only the temperature dependence of the DNA synthesis rate changed at T critical . When normalized to growth rate, RNA and protein synthesis reached a minimum at T critical , while DNA synthesis remained constant over the entire temperature range. Growth yield peaked at about T critical and declined rapidly as temperature decreased further. Similar to some stenopsychrophiles, P. cryopegella maximized growth yield at low temperatures and did so by streamlining growth processes at T critical . Identifying the specific processes which result in T critical will be vital to understanding both low-temperature growth and growth over a wide range of temperatures.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3