Decreased Accumulation or Increased Isoleucyl-tRNA Synthetase Activity Confers Resistance to the Cyclic β-Amino Acid BAY 10-8888 in Candida albicans and Candida tropicalis

Author:

Ziegelbauer Karl1

Affiliation:

1. Bayer AG, Institut für Antiinfektiva Forschung, D-42096 Wuppertal, Germany

Abstract

ABSTRACT BAY 10-8888, a cyclic β-amino acid, exerts its antifungal activity by inhibition of isoleucyl-tRNA synthetase activity after accumulation to a millimolar concentration inside the cell. We have selected and characterized BAY 10-8888-resistant Candida albicans mutants. Reduced BAY 10-8888 accumulation as well as increased isoleucyl-tRNA synthetase activity was observed in these mutants. Some of the mutants were cross-resistant to cispentacin, a structurally related β-amino acid, while sensitivities to 5-fluorocytosine and fluconazole remained unchanged in all mutants. All except two in vitro-resistant mutants were pathogenic in a murine candidiasis model, and BAY 10-8888 failed to cure the infection. Furthermore, we have characterized BAY 10-8888 transport and isoleucyl-tRNA synthetase activity in several Candida tropicalis strains which showed MICs higher than those of other Candida strains. An analysis of the C. tropicalis strains revealed that intracellular concentrations of BAY 10-8888 were in the millimolar range, comparable to those for C. albicans . However, these isolates expressed isoleucyl-tRNA synthetase activities about fourfold higher than those for C. albicans . To test the possibility of resistance modeling, we determined the correlations between the intracellular concentration of BAY 10-8888, the specific activity of isoleucyl-tRNA synthetase, the number of free, i.e., noninhibited, isoleucyl-tRNA synthetase molecules/cell, and growth, assuming a linear relation. We found significant correlations between growth and the intracellular concentration of BAY 10-8888 and between growth and the number of free isoleucyl-tRNA synthetase molecules/cell, but not between growth and the specific activity of isoleucyl-tRNA synthetase.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3