Transcriptional elongation by purified RNA polymerase II is blocked at the trans-activation-responsive region of human immunodeficiency virus type 1 in vitro

Author:

Bengal E1,Aloni Y1

Affiliation:

1. Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel.

Abstract

It has previously been shown that the human immunodeficiency virus type 1 (HIV-1) trans-activation-responsive region (TAR) is contained in a stem-loop RNA structure. Moreover, the interaction of the RNA secondary structure with Tat, the trans-activator protein, seems to play a role in activation of transcription initiation and in preventing transcription attenuation. In this work, we have studied the ability of the HIV-1 TAR stem-loop to act as a specific attenuation signal for highly purified RNA polymerase II. We developed an in vitro system using dC-tailed DNA fragments of HIV-1 to study transcriptional control in the HIV-1 LTR. We have found that transcription in this system yields an attenuator RNA whose 3' end maps to the end of the TAR stem-loop, approximately 60 to 65 nucleotides downstream of the in vivo initiation site. Furthermore, transcription attenuation occurs only under conditions which cause displacement of the nascent transcript from the template DNA strand, thus allowing the RNA to fold into secondary structure. Evidence is provided that the purified polymerase II indeed recognizes stable RNA secondary structure as an intrinsic attenuation signal. The existence of this signal in the TAR stem-loop suggests that in vivo an antiattenuation factor, probably Tat, alone or in combination with other factors, acts to relieve the elongation block at the HIV-1 attenuation site.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3