Fate of the Urinary Tract Virus BK Human Polyomavirus in Source-Separated Urine

Author:

Goetsch Heather E.1,Zhao Linbo2ORCID,Gnegy Mariah1,Imperiale Michael J.2,Love Nancy G.1,Wigginton Krista R.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA

2. Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA

Abstract

ABSTRACT Human polyomaviruses are emerging pathogens that infect a large percentage of the human population and are excreted in urine. Consequently, urine that is collected for fertilizer production often has high concentrations of polyomavirus genes. We studied the fate of infectious double-stranded DNA (dsDNA) BK human polyomavirus (BKPyV) in hydrolyzed source-separated urine with infectivity assays and quantitative PCR (qPCR). Although BKPyV genomes persisted in the hydrolyzed urine for long periods of time ( T 90 [time required for 90% reduction in infectivity or gene copies] of >3 weeks), the viruses were rapidly inactivated ( T 90 of 1.1 to 11 h) in most of the tested urine samples. Interestingly, the infectivity of dsDNA bacteriophage surrogate T3 ( T 90 of 24 to 46 days) was much more persistent than that of BKPyV, highlighting a major shortcoming of using bacteriophages as human virus surrogates. Pasteurization and filtration experiments suggest that BKPyV virus inactivation was due to microorganism activity in the source-separated urine, and SDS-PAGE Western blots showed that BKPyV protein capsid disassembly is concurrent with inactivation. Our results imply that stored urine does not pose a substantial risk of BKPyV transmission, that qPCR and infectivity of the dsDNA surrogate do not accurately depict BKPyV fate, and that microbial inactivation is driven by structural elements of the BKPyV capsid. IMPORTANCE We demonstrate that a common urinary tract virus has a high susceptibility to the conditions in hydrolyzed urine and consequently would not be a substantial exposure route to humans using urine-derived fertilizers. The results have significant implications for understanding virus fate. First, by demonstrating that the dsDNA (double-stranded DNA) genome of the polyomavirus lasts for weeks despite infectivity lasting for hours to days, our work highlights the shortcomings of using qPCR to estimate risks from unculturable viruses. Second, commonly used dsDNA surrogate viruses survived for weeks under the same conditions that BK polyomavirus survived for only hours, highlighting issues with using virus surrogates to predict how human viruses will behave in the environment. Finally, our mechanistic inactivation analysis provides strong evidence that microbial activity drives rapid virus inactivation, likely through capsid disassembly. Overall, our work underlines how subtle structural differences between viruses can greatly impact their environmental fate.

Funder

HHS | National Institutes of Health

National Science Foundation

U.S. Environmental Protection Agency

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3