NADPH Oxidases NOX-1 and NOX-2 Require the Regulatory Subunit NOR-1 To Control Cell Differentiation and Growth in Neurospora crassa

Author:

Cano-Domínguez Nallely1,Álvarez-Delfín Karen1,Hansberg Wilhelm2,Aguirre Jesús1

Affiliation:

1. Departamentos de Genética Molecular

2. Bioquímica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510, Mexico City, D.F., Mexico

Abstract

ABSTRACT We have proposed that reactive oxygen species (ROS) play essential roles in cell differentiation. Enzymes belonging to the NADPH oxidase (NOX) family produce superoxide in a regulated manner. We have identified three distinct NOX subfamilies in the fungal kingdom and have shown that NoxA is required for sexual cell differentiation in Aspergillus nidulans . Here we show that Neurospora crassa NOX-1 elimination results in complete female sterility, decreased asexual development, and reduction of hyphal growth. The lack of NOX-2 did not affect any of these processes but led instead to the production of sexual spores that failed to germinate, even in the presence of exogenous oxidants. The elimination of NOR-1, an ortholog of the mammalian Nox2 regulatory subunit gp67 phox , also caused female sterility, the production of unviable sexual spores, and a decrease in asexual development and hyphal growth. These results indicate that NOR-1 is required for NOX-1 and NOX-2 functions at different developmental stages and establish a link between NOX-generated ROS and the regulation of growth. Indeed, NOX-1 was required for the increased asexual sporulation previously observed in mutants without catalase CAT-3. We also analyzed the function of the penta-EF calcium-binding domain protein PEF-1 in N. crassa . Deletion of pef-1 resulted in increased conidiation but, in contrast to what occurs in Dictyostelium discoideum , the mutation of this peflin did not suppress the phenotypes caused by the lack of NOX-1. Our results support the role of ROS as critical cell differentiation signals and highlight a novel role for ROS in regulation of fungal growth.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3