Characterization of the cooperative function of inhibitory sequences in Ets-1

Author:

Jonsen M D1,Petersen J M1,Xu Q P1,Graves B J1

Affiliation:

1. Department of Oncological Sciences, Universtiy of Utah School of Medicine, Salt Lake City, 84132, USA.

Abstract

DNA binding by the eukaryotic transcription factor Ets-1 is negatively regulated by an intramolecular mechanism. Quantitative binding assays compared the DNA-binding activities of native Ets-1, three deletion mutants, and three tryptic fragments. Ets-1 and activated Ets-1 polypeptides differed in DNA-binding affinity as much as 23-fold. Inhibition was mediated by two regions flanking the minimal DNA-binding domain. Both regions regulated affinity by enhancing dissociation of the protein-DNA complex. Three lines of evidence indicated that inhibition requires cooperative interaction between the two regions: first, the two inhibitory regions acted through a common mechanism; second, neither region functioned independently of the other; finally, mutation of the C-terminal inhibitory region altered the conformation of the N-terminal inhibitory region. In addition, partial proteolysis detected an identical altered conformation in the N-terminal inhibitory region of Ets-1 bound to DNA. This finding suggested that repression is transiently disrupted during DNA binding. These results provide evidence that the two inhibitory regions of Ets-1 are structurally, as well as functionally, coupled. In addition, conformational change is shown to be a critical component of the inhibition mechanism. A cooperative, allosteric model of autoinhibition is described. Autoinhibition of Ets-1 could be relieved by either protein partner(s) or posttranslational modifications.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference56 articles.

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3