A silencer element for the lipoprotein lipase gene promoter and cognate double- and single-stranded DNA-binding proteins

Author:

Tanuma Y1,Nakabayashi H1,Esumi M1,Endo H1

Affiliation:

1. Medical Research Institute, Nihon University School of Medicine, Tokyo, Japan.

Abstract

Transfection experiments with constructs containing various 5'-deleted fragments of the human lipoprotein lipase (LPL) promoter and the chloramphenicol acetyltransferase reporter gene revealed an LPL silencer element (LSE) in the region of nucleotides -225 to -81 of the LPL gene that functioned in Chinese hamster ovary (CHO) and HeLa cells. Gel retardation competition analysis showed the presence of a nuclear factor(s) capable of binding to the sequence of nucleotides -169 to -152 of LSE (LSE-6) in a single-stranded (opposite-strand) and double-stranded specific fashion, the binding affinity being almost the same in the two binding forms. Site-directed mutagenesis indicated that almost the entire sequence of LSE-6 was necessary to form the complexes and also critical for silencing activity in CHO cells. The amounts of this binding factor(s) in CHO and HeLa cells were closely associated with transcriptional silencing activity. Photochemical cross-linking experiments indicated that the single- and double-stranded elements recognized the same binding factor(s) with molecular masses of 54 to 63 kDa and 109 to 124 kDa. The 109- to 124-kDa DNA binding factor(s) was found to be a doublet of that of the 54- to 63-kDa factor by isoelectric focusing or by increasing the time of exposure to UV irradiation. When inserted upstream of another gene such as that of the simian virus 40 enhancer/promoter of pSV2CAT, the sequence of nucleotides -190 to -143 (LSE-1) also suppressed transcription of the reporter gene in CHO cells. These results strongly suggest that the LSE plays a role in regulation of LPL gene expression by suppressing its transcription.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3