Multiplex Tandem PCR: a Novel Platform for Rapid Detection and Identification of Fungal Pathogens from Blood Culture Specimens

Author:

Lau Anna12,Sorrell Tania C.12,Chen Sharon13,Stanley Keith4,Iredell Jonathan123,Halliday Catriona13

Affiliation:

1. Centre for Infectious Diseases and Microbiology

2. Westmead Millennium Institute, University of Sydney

3. Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Sydney West Area Health Service, Westmead

4. AusDiagnostics Pty. Ltd., 3/36 O'Riordan St., Alexandria, New South Wales, Australia

Abstract

ABSTRACT We describe the first development and evaluation of a rapid multiplex tandem PCR (MT-PCR) assay for the detection and identification of fungi directly from blood culture specimens that have been flagged as positive. The assay uses a short-cycle multiplex amplification, followed by 12 simultaneous PCRs which target the fungal internal transcribed spacer 1 (ITS1) and ITS2 region, elongation factor 1-α (EF1-α), and β-tubulin genes to identify 11 fungal pathogens: Candida albicans, Candida dubliniensis, Candida glabrata, Candida guilliermondii, Candida krusei, Candida parapsilosis complex, Candida tropicalis, Cryptococcus neoformans complex, Fusarium solani, Fusarium species, and Scedosporium prolificans . The presence or absence of a fungal target was confirmed by melting curve analysis. Identification by MT-PCR correlated with culture-based identification for 44 (100%) patients. No cross-reactivity was detected in 200 blood culture specimens that contained bacteria or in 30 blood cultures without microorganisms. Fungi were correctly identified in five specimens with bacterial coinfection and in blood culture samples that were seeded with a mixture of yeast cells. The MT-PCR assay was able to provide rapid (<2 h), sensitive, and specific simultaneous detection and identification of fungal pathogens directly from blood culture specimens.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3