Immunization of the Female Genital Tract with a DNA-Based Vaccine

Author:

Livingston Julie B.1,Lu Shan2,Robinson Harriet3,Anderson Deborah J.1

Affiliation:

1. Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115,1 and

2. Department of Medicine2 and

3. Department of Pathology,3 University of Massachusetts Medical School, Worcester, Massachusetts 01655

Abstract

ABSTRACT Vaccines are being sought for contraception and the prevention of sexually transmitted diseases. However, progress is slow in this area largely because of lack of information on induction of protective immune responses in genital tract mucosa. In this study, we investigated whether in vivo transfection with a model DNA-based antigen delivered by gene gun technology would induce an antibody response detectable in vaginal secretions. Female rats were immunized with plasmids encoding human growth hormone (HGH) under the control of a cytomegalovirus promoter (pCMV/HGH) via vaginal mucosa (V), Peyer’s patch (PP), and/or abdominal skin (S) routes. Localization of HGH in the target tissues demonstrated that all three sites can be transfected in vivo with pCMV/HGH. Vaginal tissues expressed roughly the same level of plasmid as skin. Antibodies to HGH were detectable in serum and vaginal secretions in rats immunized with pCMV/HGH. In the rats primed and boosted vaginally, vaginal immunoglobulin A (IgA) and IgG antibody titers to HGH were sustained for at least 14 weeks, whereas rats immunized via other routes and protocols (S/V, S/S, PP/PP, or PP/V) did not consistently sustain significant vaginal antibody titers beyond week 6. DNA-based immunizations administered by the gene gun may be an effective method of inducing local immunity in the female genital tract.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vaccine delivery systems for immunization;Novel Formulations and Future Trends;2024

2. An Update on the HIV DNA Vaccine Strategy;Vaccines;2021-06-05

3. Vaginal Delivery of Subunit Vaccines;Advances in Delivery Science and Technology;2014-11-01

4. Protein and oligonucleotide delivery systems for vaginal microbicides against viral STIs;Cellular and Molecular Life Sciences;2014-10-17

5. Topical Vaginal Drug Delivery System Based on Superporous Hydrogel Hybrids;Protein & Peptide Letters;2014-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3