Affiliation:
1. Infectious Diseases and Immunopathogenesis Research Group, School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland, Australia
2. School of Applied Sciences, RMIT University, Bundoora, Victoria, Australia
Abstract
ABSTRACT
Bacterial infections are a common and serious complication of type 2 diabetes (T2D). The prevalence of melioidosis, an emerging tropical infection caused by the Gram-negative bacterium
Burkholderia pseudomallei
, is increased in people with T2D. This is the first study to compare murine models of T2D and melioidosis. Susceptibility and disease progression following infection with
B. pseudomallei
were compared in our diet-induced polygenic mouse model and a leptin receptor-deficient monogenic model of T2D. The metabolic profile of mice with diet-induced diabetes, including body weight, blood glucose, cholesterol, triglycerides, insulin resistance, and baseline levels of inflammation, closely resembled that of clinical T2D. Following subcutaneous infection with
B. pseudomallei
, bacterial loads at 24 and 72 h postinfection in the blood, spleen, liver, lungs, and subcutaneous adipose tissue (SAT) at the site of infection were compared in parallel with the expression of inflammatory cytokines and tissue histology. As early as 24 h postinfection, the expression of inflammatory (interleukin-1β [IL-1β], tumor necrosis factor alpha [TNF-α], and IL-6) and T
H
1 (IL-12 and gamma interferon [IFN-γ]) cytokines was impaired in diabetic mice compared to nondiabetic littermates. Early differences in cytokine expression were associated with excessive infiltration of polymorphonuclear neutrophils (PMN) in diabetic mice compared to nondiabetic littermates. This was accompanied by bacteremia, hematogenous dissemination of bacteria to the lungs, and uncontrolled bacterial growth in the spleens of diabetic mice by 72 h postinfection. The findings from our novel model of T2D and melioidosis comorbidity support the role of impaired early immune pathways in the increased susceptibility of individuals with T2D to bacterial infections.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献