Intrarectal Instillation of Clostridium difficile Toxin A Triggers Colonic Inflammation and Tissue Damage: Development of a Novel and Efficient Mouse Model of Clostridium difficile Toxin Exposure

Author:

Hirota Simon A.,Iablokov Vadim,Tulk Sarah E.,Schenck L. Patrick,Becker Helen,Nguyen Jimmie,Al Bashir Samir,Dingle Tanis C.,Laing Austin,Liu Jianrui,Li Yan,Bolstad Jeff,Mulvey George L.,Armstrong Glen D.,MacNaughton Wallace K.,Muruve Daniel A.,MacDonald Justin A.,Beck Paul L.

Abstract

ABSTRACTClostridium difficile, a major cause of hospital-acquired diarrhea, triggers disease through the release of two toxins, toxin A (TcdA) and toxin B (TcdB). These toxins disrupt the cytoskeleton of the intestinal epithelial cell, increasing intestinal permeability and triggering the release of inflammatory mediators resulting in intestinal injury and inflammation. The most prevalent animal model to study TcdA/TcdB-induced intestinal injury involves injecting toxin into the lumen of a surgically generated “ileal loop.” This model is time-consuming and exhibits variability depending on the expertise of the surgeon. Furthermore, the target organ ofC. difficileinfection (CDI) in humans is the colon, not the ileum. In the current study, we describe a new model of CDI that involves intrarectal instillation of TcdA/TcdB into the mouse colon. The administration of TcdA/TcdB triggered colonic inflammation and neutrophil and macrophage infiltration as well as increased epithelial barrier permeability and intestinal epithelial cell death. The damage and inflammation triggered by TcdA/TcdB isolates from the VPI and 630 strains correlated with the concentration of TcdA and TcdB produced. TcdA/TcdB exposure increased the expression of a number of inflammatory mediators associated with human CDI, including interleukin-6 (IL-6), gamma interferon (IFN-γ), and IL-1β. Finally, we were able to demonstrate that TcdA was much more potent at inducing colonic injury than was TcdB but TcdB could act synergistically with TcdA to exacerbate injury. Taken together, our data indicate that the intrarectal murine model provides a robust and efficient system to examine the effects of TcdA/TcdB on the induction of inflammation and colonic tissue damage in the context of human CDI.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3