Tissue-Binding Properties of the Cholera Toxin

Author:

Peterson Johnny W.1

Affiliation:

1. Department of Microbiology, University of Texas Medical Branch, Galveston, Texas 77550

Abstract

[ 125 I]choleragen was employed to study further the tissue-binding properties of highly purified choleragen. It was observed that [ 125 I]choleragen was bound when combined with mucosal homogenates from all regions of the gastrointestinal tract of adult guinea pigs. Gastric, duodenal, jejunal, and ileal mucosa appeared equally effective in toxin-binding capacity. Preparations of large intestinal mucosa could bind an exceptionally larger amount of toxin. The binding property of small intestinal homogenates could not be attributed to any particular fraction after differential centrifugation; rather, the toxin receptor appeared to be associated with several sizes of particles containing cell membrane components. Although binding to mammalian cells was easily demonstrable, no binding to several types of bacterial cells was observed. The toxin receptor was found to be a “universal component” of many mammalian cell membranes, since specific binding of the toxin to a variety of guinea pig tissues was clearly demonstrated. [ 125 I]choleragen binding to all tissues, with the exception of those prepared from brain and large intestinal mucosa, could be inhibited by preincubation of the tissue homogenates with unlabeled choleragen but not with comparable concentrations of normal rabbit serum proteins. The determination of the specificity of [ 125 I]choleragen binding to brain and large intestinal mucosal homogenates was hampered by the continual release of soluble receptor from the homogenates, both of which contained the highest concentration of cholera toxin receptor. The data support and extend observations that cholera toxin binding to tissue receptor(s) is a very specific reaction, and further indicate that binding may occur with a variety of tissues to different degrees.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3