Role of Herpes Simplex Virus 1 γ34.5 in the Regulation of IRF3 Signaling

Author:

Manivanh Richard1,Mehrbach Jesse1,Knipe David M.2,Leib David A.1

Affiliation:

1. Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA

2. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA

Abstract

ABSTRACT During viral infection, pattern recognition receptors (PRRs) and their associated adaptors recruit TANK-binding kinase 1 (TBK1) to activate interferon regulatory factor 3 (IRF3), resulting in production of type I interferons (IFNs). ICP0 and ICP34.5 are among the proteins encoded by herpes simplex virus 1 (HSV-1) that modulate type I IFN signaling. We constructed a recombinant virus (ΔXX) that lacks amino acids 87 to 106, a portion of the previously described TBK1-binding domain of the γ34.5 gene (D. Verpooten, Y. Ma, S. Hou, Z. Yan, and B. He, J Biol Chem 284:1097–1105, 2009, https://doi.org/10.1074/JBC.M805905200 ). These 20 residues are outside the γ34.5 beclin1-binding domain (BBD) that interacts with beclin1 and regulates autophagy. Unexpectedly, ΔXX showed no deficit in replication in vivo in a variety of tissues and showed virulence comparable to that of wild-type and marker-rescued viruses following intracerebral infection. ΔXX was fully capable of mediating the dephosphorylation of eIF2α, and the virus was capable of controlling the phosphorylation of IRF3. In contrast, a null mutant in γ34.5 failed to control IRF3 phosphorylation due to an inability of the mutant to sustain expression of ICP0. Our data show that while γ34.5 regulates IRF3 phosphorylation, the TBK1-binding domain itself has no impact on IRF3 phosphorylation or on replication and pathogenesis in mice. IMPORTANCE Interferons (IFNs) are potent activators of a variety of host responses that serve to control virus infections. The Herpesviridae have evolved countermeasures to IFN responses. Herpes simplex virus 1 (HSV-1) encodes the multifunctional neurovirulence protein ICP34.5. In this study, we investigated the biological relevance of the interaction between ICP34.5 and TANK-binding kinase 1 (TBK1), an activator of IFN responses. Here, we establish that although ICP34.5 binds TBK1 under certain conditions through a TBK1-binding domain (TBD), there was no direct impact of the TBD on viral replication or virulence in mice. Furthermore, we showed that activation of IRF3, a substrate of TBK1, was independent of the TBD. Instead, we provided evidence that the ability of ICP34.5 to control IRF3 activation is through its ability to reverse translational shutoff and sustain the expression of other IFN inhibitors encoded by the virus. This work provides new insights into the immunomodulatory functions of ICP34.5.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3