Contribution of a Sodium Ion Gradient to Energy Conservation during Fermentation in the Cyanobacterium Arthrospira (Spirulina) maxima CS-328

Author:

Carrieri Damian1,Ananyev Gennady12,Lenz Oliver13,Bryant Donald A.4,Dismukes G. Charles2

Affiliation:

1. Princeton University, Department of Chemistry and Princeton Environmental Institute, Princeton, New Jersey

2. Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854

3. Humboldt University, Institute of Biology, Berlin, Germany

4. The Pennsylvania State University, Department of Biochemistry and Molecular Biology, University Park, Pennsylvania 16802

Abstract

ABSTRACT Sodium gradients in cyanobacteria play an important role in energy storage under photoautotrophic conditions but have not been well studied during autofermentative metabolism under the dark, anoxic conditions widely used to produce precursors to fuels. Here we demonstrate significant stress-induced acceleration of autofermentation of photosynthetically generated carbohydrates (glycogen and sugars) to form excreted organic acids, alcohols, and hydrogen gas by the halophilic, alkalophilic cyanobacterium Arthrospira ( Spirulina ) maxima CS-328. When suspended in potassium versus sodium phosphate buffers at the start of autofermentation to remove the sodium ion gradient, photoautotrophically grown cells catabolized more intracellular carbohydrates while producing 67% higher yields of hydrogen, acetate, and ethanol (and significant amounts of lactate) as fermentative products. A comparable acceleration of fermentative carbohydrate catabolism occurred upon dissipating the sodium gradient via addition of the sodium-channel blocker quinidine or the sodium-ionophore monensin but not upon dissipating the proton gradient with the proton-ionophore dinitrophenol (DNP). The data demonstrate that intracellular energy is stored via a sodium gradient during autofermentative metabolism and that, when this gradient is blocked, the blockage is compensated by increased energy conversion via carbohydrate catabolism.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference50 articles.

1. Optimization of Metabolic Capacity and Flux through Environmental Cues To Maximize Hydrogen Production by the Cyanobacterium “ Arthrospira ( Spirulina ) maxima ”

2. How fast can Photosystem II split water? Kinetic performance at high and low frequencies;Ananyev G.;Photosynth Res.,2005

3. Energy biotechnology with cyanobacteria;Angermayr S. A.;Curr. Opin. Microbiol.,2009

4. Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis;Aoyama K.;J. Ferment. Bioeng.,1997

5. BelayA. . 1997. Mass culture of Spirulina outdoors—the Earthrise Farms experience, p. 131–158. In VonshakA. (ed.), Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis Inc., Bristol, PA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3