Affiliation:
1. Pharmaceutical Sciences Institute, Aston University, Birmingham, United Kingdom.
Abstract
Growth rate control of adherent, sessile populations was achieved by the controlled perfusion of membrane-associated bacterial biofilms by the method of Gilbert et al. (P. Gilbert, D. G. Allison, D. J. Evans, P. S. Handley, and M. R. W. Brown, Appl. Environ. Microbiol. 55:1308-1311, 1989). Changes in cell surface hydrophobicity were evaluated with respect to growth rate for such sessile Escherichia coli cells and compared with those of suspended (planktonic) populations grown in a chemostat. Newly formed daughter cells shed at the various growth rates from the biofilm during its growth and development were also included in the study. Surface hydrophobicity decreased with growth rate similarly for both planktonic and sessile E. coli; no significant differences were noted between the two. Daughter cells dislodged from the biofilm, however, were significantly more hydrophilic than those remaining, indicating that hydrophobicity changed during the division cycle. Our data support the hypothesis that dispersal of cells from adhesive biofilms and recolonization of new surfaces reflect cell-cycle-mediated events.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献