In Vitro Resistance Profile of the Hepatitis C Virus NS3/4A Protease Inhibitor TMC435

Author:

Lenz Oliver12,Verbinnen Thierry12,Lin Tse-I12,Vijgen Leen12,Cummings Maxwell D.12,Lindberg Jimmy3,Berke Jan Martin12,Dehertogh Pascale12,Fransen Els12,Scholliers Annick12,Vermeiren Katrien12,Ivens Tania12,Raboisson Pierre12,Edlund Michael3,Storm Susan3,Vrang Lotta3,de Kock Herman12,Fanning Gregory C.12,Simmen Kenneth A.12

Affiliation:

1. Tibotec BVBA, Gen. De Wittelaan L 11B 3, Mechelen 2800, Belgium

2. Tibotec Pharmaceuticals, Ltd., Eastgate Village, EastGate, Little Island, County Cork, Ireland

3. Medivir AB, P.O. Box 1086, Huddinge SE-141 22, Sweden

Abstract

ABSTRACT TMC435 is a small-molecule inhibitor of the NS3/4A serine protease of hepatitis C virus (HCV) currently in phase 2 development. The in vitro resistance profile of TMC435 was characterized by selection experiments with HCV genotype 1 replicon cells and the genotype 2a JFH-1 system. In 80% (86/109) of the sequences from genotype 1 replicon cells analyzed, a mutation at NS3 residue D168 was observed, with changes to V or A being the most frequent. Mutations at NS3 positions 43, 80, 155, and 156, alone or in combination, were also identified. A transient replicon assay confirmed the relevance of these positions for TMC435 inhibitory activity. The change in the 50% effective concentrations (EC 50 s) observed for replicons with mutations at position 168 ranged from <10-fold for those with the D168G or D168N mutation to ∼2,000-fold for those with the D168V or D168I mutation, compared to the EC 50 for the wild type. Of the positions identified, mutations at residue Q80 had the least impact on the activity of TMC435 (<10-fold change in EC 50 s), while greater effects were observed for some replicons with mutations at positions 43, 155, and 156. TMC435 remained active against replicons with the specific mutations observed after in vitro or in vivo exposure to telaprevir or boceprevir, including most replicons with changes at positions 36, 54, and 170 (<3-fold change in EC 50 s). Replicons carrying mutations affecting the activity of TMC435 remained fully susceptible to alpha interferon and NS5A and NS5B inhibitors. Finally, combinations of TMC435 with alpha interferon and NS5B polymerase inhibitors prevented the formation of drug-resistant replicon colonies.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3