Defective Virions of Reovirus

Author:

Nonoyama M.1,Watanabe Y.1,Graham A. F.1

Affiliation:

1. The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania 19104

Abstract

When purified preparations of stock reovirus, type 3, were digested with chymotrypsin, the virions were converted into two different types of particle. These new particles could be separated from each other by isopycnic centrifugation in cesium chloride gradients. One particle banded at a buoyant density of 1.43 g/cm 3 , the other at a density of 1.415 g/cm 3 . The former particle is termed the heavy (H) particle, the latter is the light (L) particle. The ratio of H/L particles varied between 0.5 and 0.25 in various purified preparations of virus. In electron micrographs, both H and L particles had the appearance and dimensions of viral cores. H particles were infectious for L cells. When plaques formed by stock virus, or by H particles, were picked and propagated in L cells, the majority of the clones gave rise only to H particles on chymotrypsin digestion. On continued serial passage of the clones, virions containing L particles again appeared in the progeny. The simplest explanation of these results was that stock virus was comprised of two populations of virions. One type of virion which contained H particles was infectious, whereas the other, which contained L particles, was not itself infectious and could replicate only in cells coinfected with an H particle virion. Added weight was given to this hypothesis by two observations. First, a small but definite separation of H and L virions could be achieved by isopycnic centrifugation in a gradient of cesium chloride. Second, L particles and virions containing L particles were both shown to lack the largest of the ten segments of double-stranded ribonucleic acid genome. Thus, L particle virions have defective genomes.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3