A novel mammalian protein, p55CDC, present in dividing cells is associated with protein kinase activity and has homology to the Saccharomyces cerevisiae cell division cycle proteins Cdc20 and Cdc4.

Author:

Weinstein J,Jacobsen F W,Hsu-Chen J,Wu T,Baum L G

Abstract

A novel protein, p55CDC, has been identified in cycling mammalian cells. This transcript is readily detectable in all exponentially growing cell lines but disappears when cells are chemically induced to fall out of the cell cycle and differentiate. The p55CDC protein appears to be essential for cell division, since transfection of antisense p55CDC cDNA into CHO cells resulted in isolation of only those cells which exhibited a compensatory increase in p55CDC transcripts in the sense orientation. Immunoprecipitation of p55CDC yielded protein complexes with kinase activity which fluctuated during the cell cycle. Since p55CDC does not have the conserved protein kinase domains, this activity must be due to one or more of the associated proteins in the immune complex. The highest levels of protein kinase activity were seen with alpha-casein and myelin basic protein as substrates and demonstrated a pattern of activity distinct from that described for the known cyclin-dependent cell division kinases. The p55CDC protein was also phosphorylated in dividing cells. The amino acid sequence of p55CDC contains seven repeats homologous to the beta subunit of G proteins, and the highest degree of homology in these repeats was found with the Saccharomyces cerevisiae Cdc20 and Cdc4 proteins, which have been proposed to be involved in the formation of a functional bipolar mitotic spindle in yeast cells. The G beta repeat has been postulated to mediate protein-protein interactions and, in p55CDC, may modulate its association with a unique cell cycle protein kinase. These findings suggest that p55CDC is a component of the mammalian cell cycle mechanism.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3