Enhanced I kappa B alpha degradation is responsible for constitutive NF-kappa B activity in mature murine B-cell lines.

Author:

Miyamoto S,Chiao P J,Verma I M

Abstract

Nuclear factor kappa B (NF-kappa B) is a ubiquitous transcription factor which binds to decameric DNA sequences (kappa B sites) and regulates transcription of multiple genes. The activity of NF-kappa B is regulated by an inhibitor protein, I kappa B, which sequesters NF-kappa B in the cytoplasm. Release of I kappa B and subsequent nuclear translocation of NF-kappa B generally require activating signals. However, in mature murine B cells, the DNA-binding activity of NF-kappa B is constitutively nuclear and activates the Ig kappa gene, a marker for mature B cells. To understand the basis for the constitutive NF-kappa B activation, we examined the properties of NF-kappa B and I kappa B in both pre-B and mature B cells, the regulated and constitutive states, respectively. We found that expression of I kappa B alpha and p105, members of the I kappa B family, and Rel, a member of the NF-kappa B family, is augmented in mature B cells. Both I kappa B alpha and p 105 are associated with NF-kappa B proteins and sequester most of these proteins in the cytoplasm of mature B cells. However, rapid I kappa B alpha dissociation and degradation lead to continuous nuclear translocation of a small fraction of NF-kappa B proteins, which represent the constitutively active NF-kappa B in mature B cells. We estimate that the protease activity is at least 35-fold greater in mature B cells than in pre-B cells. Rapid degradation of I kappa B alpha is directly involved in constitutive NF-kappa B activation, because stabilization of I kappa B alpha by a protease inhibitor causes loss of NF-kappa B activity in mature B cells. These results provide evidence that continuous and rapid degradation of I kappa B alpha in the absence pf external stimuli is causally involved in the constitutive activation of NF-kappa B in mature murine B cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3