Ampicillin killing curve patterns for ampicillin-susceptible nontypeable Haemophilus influenzae strains by the agar dilution plate count method

Author:

Woolfrey B F1,Enright M A1

Affiliation:

1. Department of Anatomic and Clinical Pathology, St. Paul-Ramsey Medical Center, Minnesota 55101.

Abstract

Ampicillin killing curve patterns for 20 strains of ampicillin-susceptible nontypeable Haemophilus influenzae were determined by the agar dilution plate count method. The paradoxical effect was detected in the 24-h killing curve patterns for each strain. For the biphasic effect, minimum survivor percentages (maximum killing) occurred over a narrow range of ampicillin concentrations immediately above the MIC, with survivor percentages then rising rapidly to peak at approximately 1-log10-unit increment higher. The 24-h minimum survivor percentages for the 20 strains ranged from approximately 0.01% (rapid killing) to greater than 10% (slow killing). In comparison with the previous results for typeable strains, the present findings suggest that nontypeable stains are, on average, killed much more slowly. Based on the initial 24-h killing curve patterns for the 20 strains, 4 strains were selected as putative representatives of the range of bactericidal responses encountered. These strains were then studied to examine the reproducibility of the 24-h patterns and to determine sequential killing curves. These patterns were found to be reproducible and served to characterize the relative killing responses of the strains. In the sequential studies of three of the four strains, tiny colonies having the gross and microscopic characteristics of L-forms were found to be present on the agar dilution plate count plates prior to the application of penicillinase at 48 and 72 h. Such colonies reverted to vegetative forms within 24 to 48 h after application of penicillinase to the panels. Of particular interest was the observation that the paradoxical effect was manifested both by the L-form colonies and by the reverted vegetative colonies. The late development of L-forms was observed for both rapidly and slowly killed strains.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3