Induction of the SOS response in Escherichia coli by azidothymidine and dideoxynucleosides

Author:

Mamber S W1,Brookshire K W1,Forenza S1

Affiliation:

1. Pharmaceutical Research Institute, Bristol-Myers Squibb Company, Wallingford, Connecticut 06492-7440.

Abstract

A number of nucleosides with anti-human immunodeficiency virus (HIV) activity were evaluated in two colorimetric (beta-galactosidase) assays for induction of the SOS response in Escherichia coli. 3'-Azido-3'-deoxythymidine (azidothymidine; AZT), 2',3'-dideoxyadenosine (ddA), 2',3'-dideoxyguanosine (ddG), and 2',3'-dideoxyinosine (ddI) induced cell filamentation (sulA) and prophage lambda in well-agar diffusion and liquid microsuspension assays. AZT was approximately 100 times more potent than the dideoxypurine nucleosides, inducing sulA at less than 100 ng/ml. 2',3'-Dideoxythymidine (ddT) and 2',3'-dideoxy-2',3'-didehydrothymidine (D4T) induced sulA at 100 to 1,000 micrograms/ml, while 2',3'-dideoxycytidine (ddC) weakly induced prophage lambda. Activity relationships thus were AZT greater than ddA greater than or equal to ddI greater than or equal to ddG greater than ddT = D4T greater than ddC. ddA and ddI had equivalent activities in agar diffusion assays, but different activity profiles were observed in liquid microsuspension assays. The differences may be related to drug metabolism. AZT and ddA showed marginal effects in a DNA repair (preferential toxicity) assay in which E. coli WP2 and CM871 uvrA recA lexA were used. Furthermore, none of the agents was able to preferentially inhibit Bacillus subtilis M45 recA relative to wild-type strain H17. These data suggest that AZT and the dideoxynucleosides do not cause DNA lesions that are repairable by excision repair and/or error-free postreplication repair processes. Rather, the SOS response appears to be induced by DNA chain termination leading to the inhibition of DNA replication. Bacterial assays for induction of the SOS response may be useful as simple, rapid prescreens for the discovery of new anti-HIV agents. Moreover, such assays may provide an additional parameter in the evaluation of agents with demonstrated activity against HIV and other retroviruses.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference47 articles.

1. Enzymatic synthesis of deoxyribonucleic acid. XXXIV. Termination of chain growth by a 2',3'- dideoxyribonucleotide;Atkinson M. R.;Biochemistry,1969

2. Ayers K. M. 1988. Preclinical toxicology of zidovudine. Am. J. Med. 85(Suppl. 2A):186-188.

3. Both 2',3'-dideoxythymidine and its 2',3'-unsaturated derivative (2',3'-dideoxythymidinene) are potent and selective inhibitors of human immunodeficiency virus replication in vitro;Baba M.;Biochem. Biophys. Res. Commun.,1987

4. The anti-HTLV-III (anti-HIV) and cytotoxic activity of 2',3'-didehydro-2',3'-dideoxyribonucleosides: a comparison with their parental 2',3'-dideoxyribonucleosides;Balzarini J.;Mol. Pharmacol.,1987

5. 5-Azacytidine: survival and induction of the SOS response in Escherichia coli;Barbe J.;Mutat. Res.,1986

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3