Depletion of gamma interferon and tumor necrosis factor alpha in mice with Rickettsia conorii-infected endothelium: impairment of rickettsicidal nitric oxide production resulting in fatal, overwhelming rickettsial disease

Author:

Feng H M1,Popov V L1,Walker D H1

Affiliation:

1. Department of Pathology, University of Texas Medical Branch, Galveston 77555-0609.

Abstract

C3H/HeN mice infected intravenously with a dose of Rickettsia conorii (Malish 7 strain) that is sublethal for immunocompetent animals (1.1 x 10(3) PFU) developed disseminated infection of endothelial cells of the brain, lungs, heart, liver, kidney, testis, and testicular adnexa. In R. conorii-infected mice depleted of gamma interferon (IFN-gamma) and/or tumor necrosis factor alpha (TNF-alpha) by intravenous administration of neutralizing monoclonal antibodies on days 0, 2, and 4, the mortality rate was 100%. Death of the cytokine-depleted animals on days 5 and 6 was associated with overwhelming rickettsial infection documented by titration of rickettsial content in the brain and liver and by immunohistologic demonstration of massive quantities of R. conorii in endothelial cells of all organs examined, in macrophages of the liver and spleen, and in hepatocytes. Nondepleted, immunocompetent animals showed markedly reduced rickettsial content in the tissues on day 6, with rickettsial destruction in phagolysosomes not only in macrophages but also in endothelial cells and hepatocytes. All nondepleted, infected mice recovered and appeared completely healthy by day 9. Assay of liver infiltrated by lymphocytes and macrophages revealed mRNA of IFN-gamma and TNF-alpha, indicating that the host defenses were activated at the site of infection. Treatment of mice with an analog of L-arginine reduced the synthesis of nitric oxide and impaired rickettsial killing. Nitric oxide production was also impaired in cytokine-depleted infected mice. These observations support the hypothesis that IFN-gamma secreted by T lymphocytes and natural killer cells and TNF-alpha secreted by macrophages act in a synergistic, paracrine fashion on adjacent rickettsia-infected endothelial cells, hepatocytes, and macrophages to stimulate synthesis of nitric oxide, which kills intracellular R. conorii.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference41 articles.

1. Characteristics of Iymphoid cells that adoptively transfer immunity to Rickettsia mooseri infection in mice;Crist A. E.;Infect. Immun.,1984

2. Rapid immunoperoxidase demonstration of Rickettsia rickettsii in fixed cutaneous specimens from patients with Rocky Mountain spotted fever;Dumler J. S.;Am. J. Clin. Pathol.,1990

3. Interferon--y and tumor necrosis factor-co exert their antirickettsial effect via induction of synthesis of nitric oxide;Feng H.;Am. J. Pathol.,1993

4. Urinary nitrate excretion in relation to murine macrophage activation. Influence of dietary L-arginine and oral N'3-monomethyl-L-arginine;Granger D. L.;J. Immunol.,1991

5. Neutralization of gamma interferon and tumor necrosis factor alpha blocks in vivo synthesis of nitrogen oxides from L-arginine and protection against Franicisella tularenisis infection of Mycobacterilum bov,is BCG-treated mice;Green S. J.;Infect. Immun.,1993

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3