D-arabitol metabolism in Candida albicans: construction and analysis of mutants lacking D-arabitol dehydrogenase

Author:

Wong B1,Leeson S1,Grindle S1,Magee B1,Brooks E1,Magee P T1

Affiliation:

1. Department of Internal Medicine, University of Cincinnati, College of Medicine, Ohio 45267-0560, USA.

Abstract

Candida albicans produces large amounts of the acyclic pentitol D-arabitol in culture and in infected animals and humans, and most strains also grow on minimal D-arabitol medium. An earlier study showed that the major metabolic precursor of D-arabitol in C. albicans was D-ribulose-5-PO4 from the pentose pathway, that C. albicans contained an NAD-dependent D-arabitol dehydrogenase (ArDH), and that the ArDH structural gene (ARD) encoded a 31-kDa short-chain dehydrogenase that catalyzed the reaction D-arabitol + NAD <=> D-ribulose + NADH. In the present study, we disrupted both ARD chromosomal alleles in C. albicans and analyzed the resulting mutants. The ard null mutation was verified by Southern hybridization, and the null mutant's inability to produce ArDH was verified by Western immunoblotting. The ard null mutant grew well on minimal glucose medium, but it was unable to grow on minimal D-arabitol or D-arabinose medium. Thus, ArDH catalyzes the first step in D-arabitol utilization and a necessary intermediate step in D-arabinose utilization. Unexpectedly, the ard null mutant synthesized D-arabitol from glucose. Moreover, 13C nuclear magnetic resonance studies showed that the ard null mutant and its wild-type parent synthesized D-arabitol via the same pathway. These results imply that C. albicans synthesizes and utilizes D-arabitol via separate metabolic pathways, which was not previously suspected for fungi.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference29 articles.

1. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains;Alani E.;Genetics,1987

2. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway;Albertyn J.;Mol. Cell. Biol.,1994

3. Rate of arabinitol production by pathogenic yeast species;Bernard E. M.;J. Clin. Microbiol.,1982

4. Studies on the formation of D-arabitol by osmophilic yeasts;Blakeley E. R.;Can. J. Biochem.,1962

5. An examination of the production of hydrolytic enzymes and toxins by pathogenic strains of Candida albicans;Chattaway F. W.;J. Gen. Microbiol.,1971

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3