Disruption of a gene encoding a novel thioredoxin-like protein alters the cyanobacterial photosynthetic apparatus

Author:

Collier J L1,Grossman A R1

Affiliation:

1. Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305, USA.

Abstract

A gene that may encode a novel protein disulfide oxidoreductase, designated txlA (thioredoxin-like), was isolated from the cyanobacterium Synechococcus sp. strain PCC7942. Interruption of txlA near the putative thioredoxin-like active site yielded cells that grew too poorly to be analyzed. In contrast, a disruption of txlA near the C terminus that left the thioredoxin-like domain intact yielded two different mutant phenotypes. One type, designated txlXb, exhibited a slightly reduced growth rate and an increased cellular content of apparently normal phycobilisomes. The cellular content of phycobilisomes also increased in in the other mutant strain, designated txlXg. However, txlXg also exhibited a proportionate increase in chlorophyll and other components of the photosynthetic apparatus and grew as fast as wild-type cells. Both the txlXb and txlXg phenotypes were stable. The differences between the two strains may result from a genetic polymorphism extant in the original cell population. Further investigation of txlA may provide new insights into mechanisms that regulate the structure and function of the cyanobacterial photosynthetic apparatus.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3