Suppression of the Fix- phenotype of Rhizobium meliloti exoB mutants by lpsZ is correlated to a modified expression of the K polysaccharide

Author:

Reuhs B L1,Williams M N1,Kim J S1,Carlson R W1,Côté F1

Affiliation:

1. Complex Carbohydrate Research Center, University of Georgia, Athens 30602, USA.

Abstract

The rhizobial production of extracellular polysaccharide (EPS) is generally required for the symbiotic infection of host plants that form nodules with an apical meristem (indeterminate nodules). One exception is Rhizobium meliloti AK631, an exoB mutant of Rm41, which is deficient in EPS production yet infects and fixes nitrogen (i.e., is Fix+) on alfalfa, an indeterminate nodule-forming plant. A mutation of lpsZ in AK631 results in a Fix- strain with altered phage sensitivity, suggesting that a cell surface factor may substitute for EPS in the alfalfa-AK631 symbiosis. Biochemical analyses of the cell-associated polysaccharides of AK631 and Rm5830 (AK631 lpsZ) demonstrated that the lpsZ mutation affected the expression of a surface polysaccharide that is analogous to the group II K polysaccharides of Escherichia coli; the polysaccharide contains 3-deoxy-D-manno-2-octulosonic acid or a derivative thereof in each repeating unit. Rm5830 produced a polysaccharide with altered chromatographic and electrophoretic properties, indicating a difference in the molecular weight range. Similar results were obtained in a study of Rm1021, a wild-type isolate that lacks the lpsZ gene: the introduction of lpsZ into Rm1021 exoB (Rm6903) both suppresses the Fix- phenotype and results in a modified expression of the K polysaccharide. Chromatography and electrophoresis analysis showed that the polysaccharide extracted from Rm6903 lpsZ+ differed from that of Rm6903 in molecular weight range. Importantly, the effect of LpsZ is not structurally specific, as the introduction lpsZ+ into Rhizobium fredii USDA257 also resulted in a molecular weight range change in the structurally distinct K polysaccharide produced by that strain. This evidence suggests that LpsZ has a general effect on the size-specific expression of rhizobial K polysaccharides.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference29 articles.

1. Structural elucidation, using H.P.L.C.-M.S. and G.L.C.-M.S., of the acidic polysaccharide secreted by Rhizobium meliloti strain 1021;Åman P.;Carbohydr. Res.,1981

2. Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa;Battisti L;Proc. Natl. Acad. Sci. USA,1992

3. Expression of the capsular K5 polysaccharide of Escherichia coli: biochemical and electron microscopic analyses of mutants with defects in region 1 of the K5 gene cluster;Bronner D.;J. Bacteriol.,1994

4. Carlson R. W. U. R. Bhat and B. Reuhs. 1992. Rhizobium lipopolysaccharides: their structures and evidence for their importance in the nitrogenfixing symbiotic infection of their host legumes p.33-44. In P. M. Gresshoff (ed.) Plant biotechnology and development. CRC Press Boca Raton Fla.

5. Signaling and host range variation in nodulation. Annu;Denarie J.;Rev. Microbiol.,1992

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3