Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii

Author:

Mouncey N J1,Mitchenall L A1,Pau R N1

Affiliation:

1. Nitrogen Fixation Laboratory, University of Sussex, Brighton, United Kingdom.

Abstract

DNA sequencing of the region upstream from the Azotobacter vinelandii operon (modEABC) that contains genes for the molybdenum transport system revealed an open reading frame (modG) encoding a hypothetical 14-kDa protein. It consists of a tandem repeat of an approximately 65-amino-acid sequence that is homologous to Mop, a 7-kDa molybdopterin-binding protein of Clostridium pasteurianum. The tandem repeat is similar to the C-terminal half of the product of modE. The effects of mutations in the mod genes provide evidence for distinct high- and low-affinity Mo transport systems and for the involvement of the products of modE and modG in the processing of molybdate. modA, modB, and modC, which encode the component proteins of the high-affinity Mo transporter, are required for 99Mo accumulation and for the nitrate reductase activity of cells growing in medium with less than 10 microM Mo. The exchange of accumulated 99Mo with nonradioactive Mo depends on the presence of modA, which encodes the periplasmic molybdate-binding protein. 99Mo also exchanges with tungstate but not with vanadate or sulfate. modA, modB, and modC mutants exhibit nitrate reductase activity and 99Mo accumulation only when grown in more than 10 microM Mo, indicating that A. vinelandii also has a low-affinity Mo uptake system. The low-affinity system is not expressed in a modE mutant that synthesizes the high-affinity Mo transporter constitutively or in a spontaneous tungstate-tolerant mutant. Like the wild type, modG mutants only show nitrate reductase activity when grown in > 10 nM Mo. However, a modE modG double mutant exhibits maximal nitrate reductase activity at a 100-fold lower Mo concentration. This indicates that the products of both genes affect the supply of Mo but are not essential for nitrate reductase cofactor synthesis. However, nitrogenase-dependent growth in the presence or absence of Mo is severely impaired in the double mutant, indicating that the products of modE and modG may be involved in the early steps of nitrogenase cofactor biosynthesis in A. vinelandii.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3