The rec locus, a competence-induced operon in Streptococcus pneumoniae

Author:

Pearce B J1,Naughton A M1,Campbell E A1,Masure H R1

Affiliation:

1. Laboratory of Molecular Infectious Diseases, Rockefeller University, New York, New York 10021.

Abstract

To study competence and the process of transformation (TFN) in pneumococci, we developed a method for isolating TFN- mutants using insertional inactivation coupled with fusions to the gene for alkaline phosphatase (phoA). One TFN- mutant transformed 2 log units less efficiently than the parent strain. Reconstitution of the mutated region revealed a locus, rec, that contains two polycistronic genes, exp10 and the previously identified recA (B. Martin, J. M. Ruellan, J. F. Angulo, R. Devoret, and J. P. Claverys, Nucleic Acids Res. 20:6412, 1992). Exp10 is likely to be a membrane-associated protein, as it has a prokaryotic signal sequence and an Exp10-PhoA fusion localized with cell membranes. On the basis of sequence similarity, pneumococcal RecA is a member of bacterial RecA proteins responsible for homologous recombination of DNA. DNA-RNA hybridization analysis showed that this locus is transcribed as a polycistronic message, with increased transcription occurring during competence. With an Exp10-PhoA chimera used as a reporter, there was a 10-fold increase in the expression of the rec locus during competence while there was only minimal expression under growth conditions that repressed competence. The TFN- mutant containing the exp10-phoA fusion produced activator, a small extracellular polypeptide that induces competence, and the expression of rec was induced in response to activator. Therefore, the rec locus is directly required for genetic transformation and is regulated by the cell signaling mechanism that induces competence.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3