Purification and characterization of a novel 3-chlorobenzoate-reductive dehalogenase from the cytoplasmic membrane of Desulfomonile tiedjei DCB-1

Author:

Ni S1,Fredrickson J K1,Xun L1

Affiliation:

1. Environmental Microbiology Group, Pacific Northwest Laboratory, Richland, Washington 99352, USA.

Abstract

Although reductive dehalogenation by anaerobic microorganisms offers great potential for the degradation of halocarbons, little is known about the biochemical mechanisms involved. It has previously been demonstrated that the dehalogenase activity involved in 3-chlorobenzoate dehalogenation by Desulfomonile tiedjei DCB-1 is present in the membrane fraction of the cell extracts. We report herein the purification of a 3-chlorobenzoate-reductive dehalogenase from the cytoplasmic membrane of D. tiedjei DCB-1. The dehalogenase activity was monitored by the conversion of 3-chlorobenzoate to benzoate with reduced methyl viologen as a reducing agent. The membrane fraction of the cell extracts was obtained by ultracentrifugation, and the membrane proteins were solubilized with either the detergent CHAPS (3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate) or Triton X-100 in the presence of glycerol. The solubilized dehalogenase was purified by ammonium sulfate fractionation and a combination of anion exchange, hydroxyapatite, and hydrophobic interaction chromatographies. This procedure yielded about 7% of the total dehalogenase activity with a 120-fold increase in specific activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the purified dehalogenase consisted of two subunits with molecular weights of 64,000 and 37,000. The enzyme converted 3-chlorobenzoate to benzoate at its highest specific activity in 10 mM potassium phosphate buffer (pH 7.2) at 38 degrees C. The enzyme was yellow and probably a heme protein. The enzyme had an adsorbance peak at 408 nm. The dithionite-reduced enzyme displayed absorbance peaks at 416, 522, and 550 nm. The dithionite-reduced enzyme was able to complex with carbon monoxide. The nature of the heme chromophore is currently unknown.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3