Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals

Author:

Wise A A1,Price C W1

Affiliation:

1. Department of Food Science and Technology, University of California, Davis 95616.

Abstract

sigma B of the gram-positive bacterium Bacillus subtilis is an alternative transcription factor activated by a variety of environmental stresses, including the stress imposed upon entry into the stationary growth phase. Previous reports have shown that this stationary-phase activation is enhanced when cells are grown in rich medium containing glucose and glutamine. The sigma B structural gene, sigB, lies in an operon with three other genes whose products have been shown to control sigma B activity in response to environmental stress. However, none of these is sufficient to explain the enhanced stationary-phase activation of sigma B in response to glucose. We show here that the four genes previously identified in the sigB operon constitute the downstream half of an eight-gene operon. The complete sigB operon is preceded by a sigma A-like promoter (PA) and has the order PA-orfR-orfS-orfT-orfU-PB-rsbV-rsbW-sig B-rsbX, where rsb stands for regulator of sigma-B and the previously identified sigma B-dependent promoter (PB) is an internal promoter preceding the downstream four-gene cluster. Although the genes downstream of PB were also transcribed by polymerase activity originating at PA, this transcription into the downstream cluster was not essential for normal induction of a sigma B-dependent ctc-lacZ fusion. However, deletion of all four upstream open reading frames was found to interfere with induction of the ctc-lacZ fusion in response to glucose. Additional deletion analysis and complementation studies showed that orfU was required for full glucose induction of sigma B-dependent genes. orfU encodes a trans-acting, positive factor with significant sequence identity to the RsbX negative regulator of sigma B. On the basis of these results, we rename orfU as rsbU to symbolize the regulatory role of its product.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3