Cellular ATP levels and nitrogenase switchoff upon oxygen stress in chemostat cultures of Azotobacter vinelandii

Author:

Linkerhägner K1,Oelze J1

Affiliation:

1. Institut für Biologie II, Universität Freiburg, Germany.

Abstract

When Azotobacter vinelandii, growing diazotrophically in chemostat culture, was subjected to sudden increases in the ambient oxygen concentration (oxygen stress), nitrogenase activity was switched off and cellular ATP pools decreased at rates depending on the stress level. Following a fast decrease, the ATP pool approached a lower level. When the stress was released, these effects were reversed. The reversible decrease of the ATP pool upon oxygen stress could also be observed with cultures assimilating ammonium and, at the same time, fixing dinitrogen because of growth at a high C/N ratio but not with cultures growing only at the expense of ammonium. When strains OP and UW136 of A. vinelandii were subjected to long-term increases in ambient oxygen, the sizes of cellular ATP pools eventually started to increase to the level before stress and diazotrophic growth resumed. The cytochrome d-deficient mutant MK5 of A. vinelandii, however, impaired in aerotolerant diazotrophic growth, was unable to recover from stress on the basis of its ATP pool. The results suggest that adaptation to higher ambient oxygen depends on increased ATP synthesis requiring increased electron flow through the entire respiratory chain, which is possible only in combination with the more active, yet possibly uncoupled, branch terminated by cytochrome d. It is proposed that the decrease of the cellular ATP level under oxygen stress resulted from the increased energy and electron donor requirement of nitrogenase in reacting with oxygen.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3