Central regulatory role for the RpoS sigma factor in expression of Salmonella dublin plasmid virulence genes

Author:

Chen C Y1,Buchmeier N A1,Libby S1,Fang F C1,Krause M1,Guiney D G1

Affiliation:

1. Department of Medicine, School of Medicine, University of California at San Diego, La Jolla 92093-0640, USA.

Abstract

The plasmid virulence genes spvABCD of Salmonella spp. are regulated by SpvR and the stationary-phase sigma factor RpoS. The transcription of spv genes is induced during the post-exponential phase of bacterial growth in vitro. We sought to investigate the relationship between growth phase and RpoS in spv regulation. rpoS insertion mutations were constructed in S. dublin Lane and plasmid-cured LD842 strains, and the mutants were found to be attenuated for virulence and deficient in spv gene expression. We utilized the plasmid pBAD::rpoS to express rpoS independent of the growth phase under the control of the arabinose-inducible araBAD promoter. SpvA expression was induced within 2 h after the addition of 0.1% arabinose, even when bacteria were actively growing. This suggested that the level of RpoS, instead of the growth phase itself, controls induction of the spv genes. However, RpoS did not activate transcription of spvA in the absence of SpvR protein. Using a constitutive tet promoter to express spvR, we found that the spvA gene can be partially expressed in the rpoS mutant, suggesting that RpoS is required for SpvR synthesis. We confirmed that spvR is poorly expressed in the absence of RpoS. With an intact rpoS gene, spvR expression is not dependent on an intact spvR gene but is enhanced by spvR supplied in trans. We propose a model for Salmonella spv gene regulation in which both RpoS and SpvR are required for maximal expression at the spvR and spvA promoters.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3