Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii

Author:

Daniel R1,Stuertz K1,Gottschalk G1

Affiliation:

1. Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany.

Abstract

Glycerol dehydrogenase (EC 1.1.1.6) and dihydroxyacetone kinase (EC 2.7.1.29) were purified from Citrobacter freundii. The dehydrogenase is a hexamer of a polypeptide of 43,000 Da. The enzyme exhibited a rather broad substrate specificity, but glycerol was the preferred substrate in the physiological direction. The apparent Kms of the enzyme for glycerol and NAD+ were 1.27 mM and 57 microM, respectively. The kinase is a dimer of a polypeptide of 57,000 Da. The enzyme was highly specific for the substrates dihydroxyacetone and ATP; the apparent Kms were 30 and 70 microM, respectively. The DNA region which contained the genes encoding glycerol dehydrogenase (dhaD) and dihydroxyacetone kinase (dhaK) was cloned and sequenced. Both genes were identified by N-terminal sequence comparison. The deduced dhaD gene product (365 amino acids) exhibited high degrees of homology to glycerol dehydrogenases from other organisms and less homology to type III alcohol dehydrogenases, whereas the dhaK gene product (552 amino acids) revealed no significant homology to any other protein in the databases. A large gene (dhaR) of 1,929 bp was found downstream from dhaD. The deduced gene product (641 amino acids) showed significant similarities to members of the sigma 54 bacterial enhancer-binding protein family.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3