Mutations in motif II of Escherichia coli DNA helicase II render the enzyme nonfunctional in both mismatch repair and excision repair with differential effects on the unwinding reaction

Author:

Brosh R M1,Matson S W1

Affiliation:

1. Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA.

Abstract

Site-directed mutagenesis has been employed to address the functional significance of the highly conserved aspartic and glutamic acid residues present in the Walker B (also called motif II) sequence in Escherichia coli DNA helicase II. Two mutant proteins, UvrDE221Q and UvrDD220NE221Q, were expressed and purified to apparent homogeneity. Biochemical characterization of the DNA-dependent ATPase activity of each mutant protein demonstrated a kcat that was < 0.5% of that of the wild-type protein, with no significant change in the apparent Km for ATP. The E221Q mutant protein exhibited no detectable unwinding of either partial duplex or blunt duplex DNA substrates. The D220NE221Q mutant, however, catalyzed unwinding of both partial duplex and blunt duplex substrates, but at a greatly reduced rate compared with that of the wild-type enzyme. Both mutants were able to bind DNA. Thus, the motif II mutants E221Q and D220NE221Q were able to bind ATP and DNA to the same extent as wild-type helicase II but demonstrate a significant reduction in ATP hydrolysis and helicase functions. The mutant uvrD alleles were also characterized by examining their abilities to complement the mutator and UV light-sensitive phenotypes of a uvrD deletion mutant. Neither the uvrDE221Q nor the uvrDD220NE221Q allele, supplied on a plasmid, was able to complement either phenotype. Further genetic characterization of the mutant uvrD alleles demonstrated that uvrDE221Q confers a dominant negative growth phenotype; the uvrDD220NE221Q allele does not exhibit this effect. The observed difference in effect on viability may reflect the gene products' dissimilar kinetics for unwinding duplex DNA substrates in vitro.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3