Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores

Author:

Henriques A O1,Beall B W1,Roland K1,Moran C P1

Affiliation:

1. Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA.

Abstract

The outermost protective structure found in endospores of Bacillus subtilis is a thick protein shell known as the coat, which makes a key contribution to the resistance properties of the mature spore and also plays a role in its interaction with compounds able to trigger germination. The coat is organized as a lamellar inner layer and an electron-dense outer layer and has a complex polypeptide composition. Here we report the cloning and characterization of an operon, cotJ, located at about 62 degrees on the B. subtilis genetic map, whose inactivation results in the production of spores with an altered pattern of coat polypeptides. The cotJ operon was identified by screening a random library of lacZ transcriptional fusions for a conditional (inducer-dependent) Lac+ phenotype in cells of a strain in which the structural gene (spoIIGB) for the early-acting, mother-cell-specific transcriptional factor sigma E was placed under the control of the IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible Pspac promoter. Sequence analysis of cloned DNA from the cotJ region complemented by genetic experiments revealed a tricistronic operon preceded by a strong sigma E-like promoter. Expression of an SP beta-borne cotJ-lacZ fusion commences at around h 2 of sporulation, as does expression of other sigma E-dependent genes, and shows an absolute requirement for sigma E. Studies with double-reporter strains bearing a cotJ-gusA fusion and lacZ fusions to other cot genes confirmed that expression of cotJ is initiated during sporulation prior to activation of genes known to encode coat structural proteins (with the sole exception of cotE). An in vitro-constructed insertion-deletion mutation in cotJ resulted in the formation of spores with no detectable morphological or resistance deficiency. However, examination of the profile of electrophoretically separated spore coat proteins from the null mutant revealed a pattern that was essentially identical to that of a wild-type strain in the range of 12 to 65 kDa, except for polypeptides of 17 and 24 kDa, the putative products of the second (cotJB) and third (cotJC) cistrons of the operon, that were missing or reduced in amount in the coat of the mutant. Polypeptides of the same apparent sizes are detected in spores of a cotE null mutant, on which basis we infer that the products of the cotJ operon are required for the normal formation of the inner layers of the coat or are themselves structural components of the coat. Because the onset of cotJ transcription is temporally coincident with the appearance of active sigma E, we speculate that the cotJ-encoded products may be involved in an early state of coat assembly.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference64 articles.

1. Anagnostopoulos C. P. J. Piggot and J. A. Hoch. 1993. The genetic map of Bacillus subtilis p. 425-461. In A. L. Sonenshein J. A. Hoch and R. Losick (ed.) Bacillus subtilis and other gram-positive bacteria: biochemistry physiology and molecular genetics. American Society for Microbiology Washington D.C.

2. Structure and morphogenesis of the bacterial spore coat;Aronson A. I.;Bacteriol. Rev.,1976

3. Gene structure and precursor processing of a novel Bacillus subtilis spore coat protein;Aronson A. I.;Mol. Microbiol.,1988

4. An ordered collection of Bacillus subtilis DNA segments cloned in yeast artificial chromosomes;Azevedo V.;Proc. Natl. Acad. Sci. USA,1993

5. Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat;Beall B.;J. Bacteriol.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3