The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability

Author:

Liu M Y1,Yang H1,Romeo T1

Affiliation:

1. Department of Microbiology and Immunology, University of North Texas Health Science Center at Fort Worth 76107-2699, USA.

Abstract

The carbon storage regulator gene, csrA, modulates the expression of genes in the glycogen biosynthesis and gluconeogenesis pathways in Escherichia coli and has been cloned, mapped and sequenced (T. Romeo, M. Gong, M.Y. Liu, and A.M. Brun-Zinkernagel, J. Bacteriol. 175:4744-4755, 1993; T. Romeo and M. Gong, J. Bacteriol. 175:5740-5741, 1993). We have now conducted experiments that begin to elucidate a unique mechanism for csrA-mediated regulation. Steady-state levels of glgC transcripts, encoding ADP-glucose pyrophosphorylase, were elevated by up to sixfold in a csrA::kanR mutant and were less than 6.5% of wild-type levels in a strain containing pCSR10 (csrA+), as shown by S1 nuclease protection analysis. The rate of chemical decay of these transcripts after adding rifampin to cultures was dramatically reduced by the csrA::kanR mutation. Deletion studies of a glgC'-'lacZ translational fusion demonstrated that the region surrounding the initiation codon was important for csrA-mediated regulation and indicated that neither csrA-mediated regulation nor stationary phase induction of glgC expression originates at the level of transcript initiation. Cell-free (S-200) extracts containing the CsrA gene product potently and specifically inhibited the in vitro transcription-translation of glg genes. The deduced amino acid sequence of CsrA was found to contain the KH motif, which characterizes a subset of diverse RNA-binding proteins. The results indicate that CsrA accelerates net 5'-to-3' degradation of glg transcripts, potentially through selective RNA binding.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3