Production and reutilization of an extracellular phosphatidylinositol catabolite, glycerophosphoinositol, by Saccharomyces cerevisiae

Author:

Patton J L1,Pessoa-Brandao L1,Henry S A1

Affiliation:

1. Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2683, USA.

Abstract

Phosphatidylinositol catabolism in Saccharomyces cerevisiae is known to result in the formation of extracellular glycerophosphoinositol (GroPIns). We now report that S. cerevisiae not only produces but also reutilizes extracellular GroPIns and that these processes are regulated in response to inositol availability. A wild-type strain uniformly prelabeled with [3H] inositol displayed dramatically higher extracellular GroPIns levels when cultured in medium containing inositol than when cultured in medium lacking inositol. This difference in extracellular accumulation of GroPIns in response to inositol availability was shown to be a result of both regulated production and regulated reutilization. In a strain in which a negative regulator of phospholipid and inositol biosynthesis had been deleted (an opi1 mutant), this pattern of extracellular GroPIns accumulation in response to inositol availability was altered. An inositol permease mutant (itr1 itr2), which is unable to transport free inositol, was able to incorporate label from exogenous glycerophospho [3H]inositol, indicating that the inositol label did not enter the cell solely via the transporters encoded by itr1 and itr2. Kinetic studies of a wild-type strain and an itr1 itr2 mutant strain revealed that at least two mechanisms exist for the utilization of exogenous GroPIns: an inositol transporter-dependent mechanism and an inositol transporter-independent mechanism. The inositol transporter-independent pathway of exogenous GroPIns utilization displayed saturation kinetics and was energy dependent. Labeling studies employing [14C]glycerophospho[3H] inositol indicated that, while GroPIns enters the cell intact, the inositol moiety but not the glycerol moiety is incorporated into lipids.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3