Rate of translocation of bacteriophage T7 DNA across the membranes of Escherichia coli

Author:

García L R1,Molineux I J1

Affiliation:

1. Department of Microbiology, University of Texas, Austin 78712-1095, USA.

Abstract

Translocation of bacteriophage T7 DNA from the capsid into the cell has been assayed by measuring the time after infection that each GATC site on the phage genome is methylated by cells containing high levels of DNA adenine methylase. Methylation at GATC sites on T7 DNA renders both the infecting genome and any newly synthesized molecules sensitive to the restriction enzyme DpnI. In a normal infection at 30 degrees C, translocation of the T7 genome into the cell takes between 9 and 12 min. In contrast, translocation of the entire phage lambda genome or of a T7 genome ejected from a lambda capsid can be detected within the first minute of infection. Entry of the leading end of the T7 genome occurs by a transcription-independent mechanism that brings both Escherichia coli and T7 promoters into the cell. Further translocation of the genome normally involves transcription by the RNA polymerases of both E. coli and T7; the rates of DNA translocation into the cell when catalyzed by each enzyme are comparable to the estimated rates of transcription of the respective enzymes. A GATC site located between the early E. coli promoters and the coding sequences of the first T7 protein made after infection is not methylated before the protein is synthesized, a result supporting the idea (B. A. Moffatt and F. W. Studier, J. Bacteriol. 170:2095-2105, 1988) that only certain proteins are permitted access to the entering T7 DNA. In the absence of transcription, the genomes of most T7 strains do not completely enter the cell. However, the entire genome of a mutant that lacks bp 3936 to 808 of T7 DNA enters the cell in a transcription-independent process at an average overall rate of 50 bp per s.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference46 articles.

1. Defective transcription of the right end of bacteriophage T7 DNA during an abortive infection of F plasmid-containing Escherichia coli;Beck P. J.;J. Bacteriol.,1991

2. RNA chain growth-rate in Escherichia coli;Bremer H.;J. Mol. Biol.,1968

3. The process of infection with coliphage T7. V. Shutoff of host RNA synthesis by an early phage function;Brunovskis I.;Virology,1971

4. The process of infection with coliphage T7. VI. A phage gene controlling shutoff of host RNA synthesis;Brunovskis I.;Virology,1972

5. Posttranscriptional modulation of bacteriophage P22 scaffolding protein gene expression;Casjens S.;J. Virol.,1985

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3