Affiliation:
1. Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany.
Abstract
Coproporphyrinogen III oxidase, an enzyme involved in heme biosynthesis, catalyzes the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX. Genetic and biochemical studies suggested the presence of two different coproporphyrinogen III oxidases, one for aerobic (HemF) and one for anaerobic (HemN) conditions. Here we report the cloning of the hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase from Escherichia coli by complementation of a Salmonella typhimurium hemF hemN double mutant. An open reading frame of 1,371 bp encoding a protein of 457 amino acids with a calculated molecular mass of 52.8 kDa was identified. Sequence comparisons revealed 92% amino acid sequence identity to the recently cloned S. typhimurium hemN gene and 35% identity to the Rhodobacter sphaeroides gene. The hemN gene was mapped to 87.3 min of the E. coli chromosome and found identical to open reading frame o459 previously discovered during the genome sequencing project. Complementation of S. typhimurium hemF hemN double mutants with the E. coli hemN gene was detected under aerobic and anaerobic conditions, indicating an aerobic function for HemN. The previously cloned E. coli hemF gene encoding the oxygen-dependent enzyme complemented exclusively under aerobic conditions. Primer extension experiments revealed a strong transcription initiation site 102 bp upstream of the translational start site. DNA sequences with homology to a sigma 70-dependent promoter were detected. Expression of the hemN gene in response to changing environmental conditions was evaluated by using lacZ reporter gene fusions. Under anaerobic conditions, hemN expression was threefold greater than under aerobic growth conditions. Removal of iron from the growth medium resulted in an approximately fourfold decrease of aerobic hemN expression. Subsequent addition of iron restored normal expression.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献