TEMPERATURE-SENSITIVE HYDROGENASE AND HYDROGENASE SYNTHESIS IN A PSYCHROPHILIC BACTERIUM

Author:

Upadhyay J.1,Stokes J. L.1

Affiliation:

1. Department of Bacteriology and Public Health, Washington State University, Pullman, Washington

Abstract

Upadhyay , J. (Washington State University, Pullman) and J. L. Stokes . Temperature-sensitive hydrogenase and hydrogenase synthesis in a psychrophilic bacterium. J. Bacteriol. 86: 992–998. 1963.—Hydrogenase and its synthesis were more heat-sensitive in psychrophilic strain 82 than in mesophilic Escherichia coli . The enzyme was not formed above 20 C by the psychrophile, whereas it was formed by E. coli and other mesophiles at 45 C. Aerobically grown cells of strain 82 do not contain hydrogenase but could be induced to form the enzyme by incubation with glucose and amino acids. Hydrogenase adaptation proceeded best at pH 8.0. The psychrophile hydrogenase was destroyed 50% by exposure to 60 C for 2 hr compared with 25% destruction of mesophile hydrogenase under the same conditions. The psychrophile hydrogenase was most active at pH 9.0, and the mesophile hydrogenase was most active at pH 10.0 or higher.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3