Evaluation of Moxifloxacin, a New 8-Methoxyquinolone, for Treatment of Meningitis Caused by a PenicillinResistant Pneumococcus in Rabbits

Author:

Østergaard Christian1,Klitmøller Sørensen Tina1,Dahl Knudsen Jenny1,Frimodt-Møller Niels1

Affiliation:

1. Division of Microbiology, Department of Clinical Microbiology, Statens Serum Institut, Copenhagen, Denmark

Abstract

ABSTRACT Moxifloxacin is a new 8-methoxyquinolone with high activity against gram-positive bacteria, including penicillin-resistant pneumococci. In an experimental meningitis model, we studied the pharmacokinetics of moxifloxacin in infected and uninfected rabbits and evaluated the antibiotic efficacies of moxifloxacin, ceftriaxone, and vancomycin against a penicillin-resistant Streptococcus pneumoniae strain (penicillin, ceftriaxone, vancomycin, and moxifloxacin MICs were 1, 0.5, 0.5, and 0.125 μg/ml, respectively). Moxifloxacin entered cerebrospinal fluid (CSF) readily, with peak values within 15 to 30 min after bolus intravenous infusion and with a mean percent penetration into normal and purulent CSF of approximately 50 and 80%, respectively. The bactericidal effect of moxifloxacin was concentration dependent, and regrowth was seen only when the concentration of moxifloxacin in CSF was below the minimal bactericidal concentration. All antibiotic-treated groups (moxifloxacin given in two doses of 40 mg/kg of body weight, moxifloxacin in two 20-mg/kg doses, ceftriaxone in one 125-mg/kg dose, and vancomycin in two 20-mg/kg doses) had significantly higher reductions in CSF bacterial concentration than the untreated group ( P < 0.05). Moxifloxacin was as effective as vancomycin and ceftriaxone in reducing bacterial counts at all time points tested (3, 5, 10, and 24 h). Moreover, moxifloxacin given in two 40-mg/kg doses resulted in a significantly higher reduction in CSF bacterial concentration (in log 10 CFU per milliliter) than vancomycin within 3 h after the start of antibiotic treatment (3.49 [2.94 to 4.78] versus 2.50 [0.30 to 3.05]; P < 0.05). These results indicate that moxifloxacin could be useful in the treatment of meningitis, including penicillin-resistant pneumococcal meningitis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference33 articles.

1. The challenge of penicillin-resistant Streptococcus pneumoniae meningitis: current antibiotic therapy in the 1990s.;Bradley J. S.;Clin. Infect. Dis.,1997

2. Fluoroquinolone (ciprofloxacin) secretion by human intestinal epithelial (Caco-2) cells.;Cavet M. E.;Br. J. Pharmacol.,1997

3. Effect of Probenecid on Cerebrospinal Fluid Concentrations of Penicillin and Cephalosporin Derivatives

4. In vitro activity of BAY 12-8039, a new 8-methoxyquinolone.;Dalhoff A.;Chemotherapy (Basel),1996

5. Pharmacokinetics of fleroxacin and its metabolites in serum, cerebrospinal fluid, and brain of rabbits with and without experimental Escherichia coli meningitis.;Decazes J. M.;Rev. Infect. Dis.,1989

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3