Generation of Mice Deficient in both KLF3/BKLF and KLF8 Reveals a Genetic Interaction and a Role for These Factors in Embryonic Globin Gene Silencing

Author:

Funnell Alister P. W.1,Mak Ka Sin1,Twine Natalie A.1,Pelka Gregory J.2,Norton Laura J.1,Radziewic Tania2,Power Melinda2,Wilkins Marc R.1,Bell-Anderson Kim S.3,Fraser Stuart T.4,Perkins Andrew C.56,Tam Patrick P.2,Pearson Richard C. M.1,Crossley Merlin1

Affiliation:

1. School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia

2. Children's Medical Research Institute, Westmead, New South Wales, Australia

3. School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia

4. Disciplines of Physiology, Anatomy and Histology, School of Medical Science, University of Sydney, Sydney, New South Wales, Australia

5. Mater Medical Research Institute, Translational Research Institute, Woolloongabba, Queensland, Australia

6. Division of Molecular Genetics and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia

Abstract

ABSTRACT Krüppel-like factors 3 and 8 (KLF3 and KLF8) are highly related transcriptional regulators that bind to similar sequences of DNA. We have previously shown that in erythroid cells there is a regulatory hierarchy within the KLF family, whereby KLF1 drives the expression of both the Klf3 and Klf8 genes and KLF3 in turn represses Klf8 expression. While the erythroid roles of KLF1 and KLF3 have been explored, the contribution of KLF8 to this regulatory network has been unknown. To investigate this, we have generated a mouse model with disrupted KLF8 expression. While these mice are viable, albeit with a reduced life span, mice lacking both KLF3 and KLF8 die at around embryonic day 14.5 (E14.5), indicative of a genetic interaction between these two factors. In the fetal liver, Klf3 Klf8 double mutant embryos exhibit greater dysregulation of gene expression than either of the two single mutants. In particular, we observe derepression of embryonic, but not adult, globin expression. Taken together, these results suggest that KLF3 and KLF8 have overlapping roles in vivo and participate in the silencing of embryonic globin expression during development.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3