The Escherichia coli Azoreductase AzoR Is Involved in Resistance to Thiol-Specific Stress Caused by Electrophilic Quinones

Author:

Liu Guangfei1,Zhou Jiti1,Fu Q. Shiang123,Wang Jing1

Affiliation:

1. Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China

2. Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305-4020

3. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China

Abstract

ABSTRACT The physiological role of Escherichia coli azoreductase AzoR was studied. It was found that AzoR was capable of reducing several benzo-, naphtho-, and anthraquinone compounds, which were better substrates for AzoR than the model azo substrate methyl red. The ΔazoR mutant displayed reduced viability when exposed to electrophilic quinones, which are capable of depleting cellular reduced glutathione (GSH). Externally added GSH can partially restore the impaired growth of the ΔazoR mutant caused by 2-methylhydroquinone. The transcription of azoR was induced by electrophiles, including 2-methylhydroquinone, catechol, menadione, and diamide. A transcription start point was identified 44 bp upstream from the translation start point. These data indicated that AzoR is a quinone reductase providing resistance to thiol-specific stress caused by electrophilic quinones.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3